Mat1062: Introductory Numerical Methods for PDE

نویسنده

  • Mary Pugh
چکیده

This notation is slightly confusing, since L is not a matrix: we use it to denote this \a ne linear" operation. To solve this system of ODEs, we choose a time step k, de ne time levels tn = nk for n = 0, 1, . . . , and introduce u n ∈ RN−1. The vector un will be determined by a discrete dynamical system and it is our hope that this can be done in such a way that uj ≈ Uj(tn) ≈ u(xj, tn). Recall that the superscript n denotes the nth time level rather than the nth power.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry

The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...

متن کامل

Numerical homogenization methods

Numerical homogenization methods Synonyms multiscale methods for homogenization problems, upscaling methods, representative volume element methods Definition Numerical homogenization methods are techniques for finding numerical solutions of partial differential equations (PDEs) with rapidly oscillating coefficients (multiple scales). In mathematical analysis, homogenization can be defined as a ...

متن کامل

THE USE OF A RUNGE-KUTTA SCHEME FOR AN ODE-PDE MODEL OF SUPPLY CHAINS

Integrating various suppliers to satisfy market demand is of great importance for e ective supply chain management. In this paper, we consider the ODE-PDE model of supply chain and apply a classical explicit fourth-order Runge-Kutta scheme for the related ODE model of suppliers. Also, the convergence of the proposed method is proved. Finally a numerical example is studied to demonstrate the acc...

متن کامل

On Pricing American and Asian Options with Pde Methods

The influence of the analytical properties of the Black-Scholes PDE formulation for American and Asian options on the quality of the numerical solution is discussed. It appears that numerical methods for PDEs are quite robust even when the mathematical formulation is not well posed.

متن کامل

Numerical Techniques for Optimization Problems with PDE Constraints

Optimization problems with partial differential equation (PDE) constraints arise in many science and engineering applications. Their robust and efficient solution present many mathematical challenges and requires a tight integration of properties and structures of the underlying problem, of fast numerical PDE solvers, and of numerical nonlinear optimization. This workshop brought together exper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009